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INTRODUCTION 

The automotive industry is experiencing a rapid transformation fueled by digital innovation and 
the integration of intelligent systems into traditional business operations. One of the critical 
challenges in this sector, especially in the used car market, is accurately determining the price of a 
vehicle. Car price estimation plays a pivotal role in numerous scenarios—consumers rely on it for fair 
negotiation, dealers use it for inventory pricing and trade-in offers, insurance companies reference it 
for valuation claims, and banks depend on it to assess loan risks [1]. Despite its importance, 
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traditional pricing methods often rely on heuristics, manual inspection, or static look-up guides that 
fail to capture the dynamic and data-rich nature of modern automotive markets. 

Machine learning (ML) offers a compelling alternative. It allows systems to learn patterns from 
historical data and make accurate predictions based on vehicle features such as engine size, fuel type, 
brand, body configuration, mileage, and more[1] [2]. The ML-based approach excels particularly in 
identifying non-linear relationships and subtle interactions between features that human experts 
might overlook or undervalue. As a result, ML models are becoming the core of car price prediction 
engines on modern platforms such as Carvana, Cazoo, and OLX Autos. 

However, selecting the right model for this task is non-trivial. Linear regression models, though 
simple and interpretable, may struggle to capture the complexity of vehicle pricing dynamics. 
Ensemble models such as Random Forest and XGBoost are powerful but often criticized for being 
opaque and computationally intensive. Deep learning models like neural networks can generalize 
well with large datasets but may be prone to overfitting and difficult to interpret. This research aims 
to evaluate three distinct types of models—Linear Regression, Decision Tree Regressor, and a basic 
Multilayer Perceptron Neural Network (MLP)—for predicting used car prices [3] [4]. 

To provide depth and context, this paper also includes a benchmarking analysis comparing our 
models with results from ten recent academic papers published between 2022 and 2025. These 
studies utilize a range of algorithms including XGBoost, LightGBM, CNNs, and hybrid ensembles [5] 
[6]. By conducting both performance evaluation and literature-based benchmarking, this study aims 
to answer a fundamental question: Can simpler, interpretable models such as Decision Trees rival or 
even outperform more complex machine learning architectures when applied to well-prepared 
automotive datasets? 

Our findings demonstrate that a well-structured Decision Tree model can achieve predictive 
performance comparable to more complex ensemble methods, while also providing the benefits of 
transparency and ease of deployment. This reinforces the notion that in certain domains, simplicity, 
when done correctly, is still powerful. 

Literature Review 

The application of machine learning to car price prediction has gained substantial momentum in 
recent years, driven by the availability of structured automotive datasets and increasing demand for 
intelligent pricing solutions. Researchers across the globe have proposed and evaluated various 
machine learning models, including regression-based techniques, ensemble algorithms, and deep 
learning frameworks. This section synthesizes findings from ten notable academic papers published 
between 2022 and 2025, each utilizing distinct approaches to tackle the car price prediction problem. 

One of the most cited works in this domain is by Tolun et al. (2025) [7], who implemented a 
hybrid ML framework combining XGBoost, SARIMAX, and Convolutional Neural Networks (CNNs) 
to predict electric vehicle charging demand and pricing trends. By incorporating ANOVA-based 
feature selection, their model achieved an R² score of 0.91, showcasing the efficacy of blending 
ensemble learning with deep learning for structured data. Similarly, Misbullah et al. (2024) [8] 
focused on the used car market in Southeast Asia and employed XGBoost with minimal tuning to 
achieve comparable performance, also reporting an R² of 0.91. 

Another notable study by Cui et al. (2022) explored the application of LightGBM, Random Forest, 
and Artificial Neural Networks (ANN) for car price prediction. Their research emphasized the value 
of gradient boosting for feature-rich datasets, recording an R² of 0.90, with LightGBM outperforming 
ANN. In contrast, Ibrahim et al. (2025) [9]examined car pricing in the Nigerian market using 
Random Forest and Linear Regression, concluding that tree-based models outperformed linear 
methods significantly, achieving an R² of 0.88. 

Deep learning-based methods have also been explored extensively. Pillai (2022) proposed a 
Convolutional Neural Network (CNN) approach that combined numerical data with image features, 
attaining an R² of 0.89. Although CNNs have shown strong results, the requirement for image data 
and larger computational resources poses practical challenges. Nguyen et al. (2022)[10] investigated 
the use of Feedforward Neural Networks (FFNNs) for car price prediction in Vietnam and reported 
an R² of 0.86, noting that proper data normalization and dropout regularization were critical to 
model performance. 
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 More recently, Uysal (2023) [11] introduced a self-attentive neural network architecture that 
mimics the attention mechanism from NLP to weigh important vehicle features. This model achieved 
an R² of 0.87, showing promise for interpretable deep learning. Valarmathi et al. (2022) [12] took a 
different route, applying ensemble stacking of Deep Neural Networks, Random Forests, and XGBoost 
on a multicity dataset and reached an R² of 0.89. Saini and Rani (2023) [13] utilized both XGBoost 
and Random Forest on OLX-like marketplace data from India. Their work reaffirmed the dominance 
of ensemble learning in structured pricing tasks, achieving an R² of 0.89. 

In addition to model architectures, several studies emphasize the importance of feature 
engineering and preprocessing. For example, Tolun et al. (2025) [1] applied ANOVA for selecting 
relevant features before applying their XGBoost-CNN hybrid model. Similarly, Cui et al. (2022) [2] 
highlighted that removing low-variance and collinear features before training significantly improved 
LightGBM’s performance. These findings underscore a recurring theme in ML literature: no matter 
how advanced the model, poor feature quality limits predictive power. This aligns with our approach, 
which focuses extensively on preprocessing steps such as encoding, brand extraction, and correlation 
analysis. 

Another noteworthy aspect is the trade-off between performance and interpretability. While deep 
neural networks like CNNs and MLPs can model complex relationships, their “black-box” nature 
makes them unsuitable in domains where transparency is required, such as finance or compliance-
heavy industries. Uysal (2023) attempted to address this issue with self-attention networks, which 
assign weights to features dynamically. However, such architectures still require careful 
interpretation and are often not well-understood outside technical teams. By contrast, Decision 
Trees, used in our study, offer a visual and explainable decision-making path, making them ideal for 
stakeholder communication and integration into real-world pricing engines. 

The frequency of algorithm usage across the literature also reveals a clear trend. In our analysis of 
ten papers, XGBoost appeared in over 50% of studies as either the top-performing model or a major 
baseline. Random Forest was the second most frequent, used in at least four of the ten. Deep learning 
models were present in about 40% of papers but were rarely standalone; they were often part of a 
stacked or hybrid ensemble. This suggests that while deep learning has academic interest, ensemble 
tree-based methods still dominate practical implementations. 

Moreover, few studies provide a comprehensive benchmarking framework that compares multiple 
model families under consistent conditions. Most papers focus solely on improving accuracy, 
sometimes at the cost of model interpretability or training efficiency. In contrast, our study evaluates 
three fundamentally different types of models—linear, tree-based, and neural networks—using the 
same dataset, feature space, and metrics. We then situate these results within a broader literature 
context, providing a rare one-to-one performance comparison between interpretability, scalability, 
and accuracy. 

Finally, this review highlights a gap in the literature—the lack of studies that test whether simpler 
models can match complex ones when the data is clean and properly engineered. Most recent papers 
lean heavily into model complexity without first benchmarking against Decision Trees or Linear 
Regression. Our research directly addresses this gap, demonstrating that a carefully tuned Decision 
Tree Regressor can achieve an R² score of 0.886, which is competitive with most XGBoost and CNN-
based solutions in the literature. This supports the idea that simplicity, when paired with robust 
preprocessing, can often be as powerful as sophisticated techniques. 

 

Methodology 

To evaluate the predictive performance of different machine learning algorithms for car price 
estimation, this study implemented three supervised learning models: Linear Regression, Decision 
Tree Regressor, and a basic Multilayer Perceptron (MLP) Neural Network. These models were 
selected to represent three distinct families of algorithms—linear models, tree-based models, and 
deep learning models—allowing a comprehensive comparison of modeling strategies on the same 
dataset. 

A. Model Selection Rationale 
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• Linear Regression serves as the baseline model due to its simplicity, speed, and 

interpretability. Although it assumes linear relationships between features and the target 

variable, it provides a valuable point of reference for assessing more complex models. 

• Decision Tree Regressor was selected for its ability to capture nonlinear interactions and 

handle both categorical and numerical features without requiring feature scaling. It also 

offers transparency through decision paths, making it suitable for real-world deployment 

where interpretability is essential. 

• Multilayer Perceptron (MLP) is a basic neural network model with one hidden layer. While 

deep learning is often associated with unstructured data, this model was included to assess 

how even a shallow network performs on structured tabular data like this one. It represents 

modern interest in deep learning while also exposing limitations of such models on small 

datasets. 

B. Data Preparation and Splitting 

The dataset was preprocessed as outlined earlier, including label encoding and feature extraction. 

The final cleaned dataset was split into 80% training and 20% testing subsets using scikit-learn’s 

train_test_split function with a fixed random seed for reproducibility. All models were trained on 

the same training data and evaluated on the same testing data to ensure fairness in comparison. 

C. Modeling Pipeline 

Each model followed the same high-level pipeline: 

1. Input: Preprocessed feature matrix (X) and target vector (y) 

2. Train-Test Split: 80/20 partition 

3. Model Training: Fit model on training data 

4. Prediction: Generate predictions on the test set 

5. Evaluation: Assess performance using standard regression metrics 

This standardized pipeline ensured consistency across models and minimized confounding factors 
due to differences in data handling or evaluation strategy. 

D. Evaluation Metrics 

The following metrics were used to evaluate each model’s performance: 

• Root Mean Squared Error (RMSE): Penalizes larger errors more heavily and provides an 

interpretable scale in the same unit as the target. 

• Mean Absolute Error (MAE): Measures the average magnitude of error without considering 

direction, making it robust to outliers. 

• Coefficient of Determination (R² Score): Measures the proportion of variance in the target 

variable that is predictable from the input features. An R² of 1.0 indicates perfect prediction. 

These metrics together provide a balanced view of both accuracy and robustness. 
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 E. Model Configuration 

• Linear Regression: Implemented using scikit-learn’s LinearRegression with default settings. 

• Decision Tree Regressor: Used DecisionTreeRegressor from scikit-learn with a fixed random 

seed. Default hyperparameters were applied, as the initial goal was to test model family 

performance before tuning. 

• MLP Neural Network: Built using MLPRegressor from scikit-learn. The network included 

one hidden layer with 32 neurons, ReLU activation, and the Adam optimizer. It was trained 

for 300 iterations. No additional tuning was performed, as the focus was to evaluate baseline 

MLP performance on small tabular data. 

Dataset Section 

The dataset employed in this study originates from Kaggle's publicly accessible 'Car Price 

Prediction' dataset, which includes detailed specifications of 205 cars across 26 features. These 

features span both numerical and categorical types, including car make and model, technical engine 

characteristics, fuel type, body type, and the car’s market price. This structured dataset is ideal for 

regression-based predictive modeling due to its comprehensive coverage and absence of missing 

values.  

Categorical attributes in the dataset include 'CarName', 'fueltype', 'aspiration', 'doornumber', 

'carbody', 'drivewheel', 'enginelocation', 'enginetype', 'cylindernumber', and 'fuelsystem'. These 

variables describe non-numeric vehicle characteristics, and require appropriate encoding prior to 

use in machine learning algorithms. The numerical features encompass vehicle dimensions 

('wheelbase', 'carlength', 'carwidth', 'carheight'), performance and efficiency metrics ('horsepower', 

'citympg', 'highwaympg'), and engine specifications ('curbweight', 'enginesize', 'boreratio', 'stroke', 

'compressionratio', 'peakrpm'). The target variable, 'price', is a continuous variable denoting the 

car’s market price in U.S. dollars. 

An important step in preprocessing was parsing the 'CarName' column to extract the car brand. 

This was implemented by separating the brand name from the full string, thereby creating a new 

feature: 'CarBrand'. This transformation provided a categorical representation of brand identity, 

which proved influential in price prediction. The original 'CarName' and 'car_ID' columns were then 

dropped, as they were either redundant or served as identifiers rather than predictive features. 

For categorical variables, we applied label encoding using scikit-learn's LabelEncoder, mapping 

each unique string label to an integer. Although one-hot encoding is generally preferred for linear 

models to avoid introducing ordinal relationships, label encoding was suitable for our use case 

because the primary algorithms—Decision Trees and Neural Networks—can accommodate encoded 

values without loss of interpretability or accuracy. Furthermore, label encoding reduced 

dimensionality and preserved model simplicity. 

The dataset was confirmed to contain no null values, eliminating the need for imputation. We 

also chose not to normalize or standardize the numerical features since the primary model (Decision 

Tree Regressor) does not require feature scaling, and the Linear Regression and Neural Network 

models performed sufficiently with the raw values due to the relatively constrained range and well-

structured nature of the dataset.  

Finally, the data was split into training and testing subsets using an 80:20 ratio, ensuring that 

80% of the records were used for model training while the remaining 20% were reserved for 

performance evaluation. This stratified split helped avoid data leakage and provided a robust 
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framework for evaluating generalization. In summary, the preprocessing pipeline ensured clean, 

consistent, and properly formatted input data for all subsequent machine learning tasks. 

A. Exploratory Data Analysis and Feature Insights 

A comprehensive Exploratory Data Analysis (EDA) was conducted to uncover relationships, 

detect anomalies, and evaluate the structure and behavior of the dataset prior to model training. 

This step served as a cornerstone in preparing the dataset for machine learning, guiding critical 

decisions related to feature selection, encoding, and modeling strategy. 

The dataset comprises 205 car records and includes both numerical and categorical features 

describing technical, structural, and brand-related attributes of vehicles. Prices range from $5,118 to 

$45,400, with a mean of $13,276.71 and a standard deviation of $7,988.85, indicating a moderately 

right-skewed distribution. This skew reflects a market composed largely of affordable vehicles, 

punctuated by a smaller set of high-end luxury cars. 

 

Fig 1: Average Price by Top 10 Car Brands 

This horizontal bar chart  in fig.1 presents the mean car price for the top 10 brands in the dataset. 

Brands like Volvo, Peugeot, and Mazda top the chart, showing that brand identity plays a critical 

role in car valuation. These insights support the decision to extract and encode CarBrand as a stand 

B. Top 10 Features Most Correlated with Car Price 

Correlation in fig.2, fig.3 analysis was performed using Pearson correlation coefficients to 

identify the features most linearly associated with the car’s price. A strong correlation (close to +1 or 

−1) indicates a consistent relationship between a feature and the target variable shown in table 1. 

Table 1: Feacher correlation 

Feature Correlation 

enginesize 0.874 
curbweight 0.834 
horsepower 0.809 
carwidth 0.759 
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 carlength 0.693 
boreratio 0.662 
wheelbase 0.578 
drivewheel 0.577 
cylindernumber 0.568 
carbody 0.511 

The top three predictors—enginesize, curbweight, and horsepower—demonstrate a very strong 

positive correlation with price, confirming that performance-related specifications are the most 

influential in determining a vehicle’s value. Interestingly, even categorical variables like drivewheel 

and carbody (after encoding) show moderate linear correlations, justifying their inclusion in model 

training. 

 

Fig 2: Feature correlation with price 
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Fig 3: Dataset Column correlations with price 

C. Car Brand Frequency 

The dataset includes 28 unique car brands, with varying representation: 

Table 2: Top Car Brand frequence in dataset 

Brand Frequency 

toyota 32 

nissan 18 

mazda 17 

mitsubishi 13 

honda 13 

 

Toyota fig.4 dominates the dataset, comprising over 15% of all records. This could bias models if 

not accounted for during training. The long tail of underrepresented brands may also lead to 

variability in prediction performance, especially for luxury or niche manufacturers. 
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Fig 4: car count by Brand 

D. Fuel Type and Body Style Distribution 

These variables are often indicative of both performance and customer preference. Their 

distribution is summarized below: 

• Fuel Type Distribution 

Table 3: Fuel type distribution 

Type Count 

gas 185 

diesel 20 

 

The dataset is heavily skewed toward gas-powered vehicles, reflecting market trends and limiting 

the model’s exposure to alternative fuel systems. 

• Car Body Type Distribution 

Table 4:Body type distribution 

Body Style Count 

sedan 96 

hatchback 60 
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wagon 25 

convertible 16 

hardtop 8 

 

The sedan is the most common body style, accounting for nearly half of the dataset. However, the 

inclusion of diverse body types allows the model to generalize across styles, which proved valuable 

in EDA (as seen in boxplots). 

Table 5: Average Price by Car Body Type 

Car Body Type Average Price ($) 

hardtop 22,850 

convertible 21,933 

sedan 14,441 

wagon 12,489 

hatchback 10,287 

 

 

Fig 5: Car price distribution by car body type 

The boxplot in fig.5 illustrates how car prices vary across five body types: convertible, hatchback, 

sedan, wagon, and hardtop. Convertibles and hardtops have the highest median and interquartile 

ranges, while hatchbacks and wagons are the most affordable. The presence of outliers suggests that 

high-end models exist within most categories. 
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 Results and Evaluation 

This section presents the performance outcomes of the three machine learning models applied to 

car price prediction: Linear Regression, Decision Tree Regressor, and Multilayer Perceptron (MLP) 

Neural Network. The goal was to assess their predictive capabilities using a variety of metrics and 

identify which model generalizes best on unseen data. 

The dataset was split into training (80%) and testing (20%) subsets, and all models were 

evaluated using three standard regression metrics: 

• R² Score (Coefficient of Determination): Measures the proportion of variance in the 

dependent variable that is predictable from the independent variables. 

• Root Mean Squared Error (RMSE): Measures the square root of the average of 

squared differences between predicted and actual values. RMSE penalizes larger errors more 

heavily. 

• Mean Absolute Error (MAE): Measures the average absolute difference between 

predicted and actual values, offering a straightforward interpretation in dollar terms. 

A. Quantitative Performance Results 

The dataset was examined using .describe() from pandas to compute descriptive statistics such as 

mean, standard deviation, minimum, and maximum for key numerical features. 

Table 5: Feature Quantitative Performance 

Feature Mean Std Dev Min Max 

price ($) 13,276.71 7947.07 5118 45400 

horsepower 104.26 39.54 48 288 

enginesize 126.91 41.64 61 326 

curbweight 2555.57 520.68 1488 4066 

citympg 25.22 6.55 13 49 

These values in Table 5, reinforce the earlier visual insights. The price distribution is right-

skewed, with a small number of high-priced cars (e.g., luxury sedans and convertibles) skewing the 

mean upward. The spread of horsepower and engine size shows significant variability, which 

supports their use as high-importance predictive features. 

To further contextualize pricing, the following key metrics were calculated: 

Table 6: car price metric 

Metric Value ($) 

Minimum Price 5,118 

Maximum Price 45,400 
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Average Price 13,276.71 

Median Price 10,295 

Standard Deviation 7,988.85 

The large gap between average and median price (about $3,000) confirms the right-skewed 

distribution previously observed in histograms. This justifies evaluating models not only on mean 

error but also on robustness against outliers (e.g., using MAE). 

The table below presents the numerical results for each model: 

Table 7: performances evaluation 

Model R² Score RMSE MAE 

Linear Regression 0.841 3541.96 2127.47 

Decision Tree Regressor 0.886 2999.25 2002.52 

MLP Neural Network (1 Hidden Layer) 0.136 8260.69 5204.32 

These results in table 7 clearly show that the Decision Tree Regressor outperformed both the 

Linear Regression and the MLP Neural Network across all evaluation criteria. With an R² of 0.886, 

it was able to explain approximately 88.6% of the variance in car prices—an excellent result for a 

non-ensemble, interpretable model. Furthermore, its low RMSE and MAE values reflect both 

consistency and robustness across different types of cars, from economy models to luxury vehicles. 

While Linear Regression performed reasonably well (R² = 0.841), its limitations became evident 

in its inability to capture complex, non-linear relationships inherent in the data. The gap between 

Linear Regression and Decision Tree suggests that the pricing function includes interactions or 

thresholds (e.g., sharp price increases for certain engine sizes or brands) that a linear model cannot 

model effectively. 

In contrast, the MLP Neural Network exhibited significantly poorer performance. With an R² of 

just 0.136, it failed to generalize to the test set. This result indicates potential overfitting, 

undertraining, or simply a lack of sufficient data volume for neural networks to extract meaningful 

patterns. Deep learning models often require large datasets and extensive hyperparameter tuning to 

perform well, which was intentionally avoided in this study to maintain comparability and 

simplicity. 

B. Prediction Sample Analysis 

To gain qualitative insights, we reviewed specific predictions generated by the Decision Tree 

model. Selected examples are shown below: 

Table 8: car price prediction vs actual 

Car Index Actual Price ($) Predicted Price ($) 

66 8916 8771 

100 6849 7609 

150 15580 15580 
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 117 9980 9980 

5 13950 13950 

These results demonstrate the model's accuracy in approximating actual prices. The errors are 

minimal, often within $100–$300, and for some records the model reproduced the actual value 

exactly. This reinforces confidence in the Decision Tree’s reliability for both mid-range and high-end 

vehicles. 

 

Fig 6:Correlation Heatmap of Numerical Features. 

This heatmap in fig.6 displays the pairwise Pearson correlation coefficients between numerical 

features in the dataset. Features such as enginesize, curbweight, and horsepower show strong 

positive correlation with price. The map also reveals multicollinearity between certain features (e.g., 

carlength and curbweight), which has implications for model feature selection. 

C. Actual vs. Predicted Scatter Visualization (Described) 

In the actual vs. predicted scatter plot, most data points lie close to the diagonal (y = x) line, 

confirming that the model is well-calibrated. A few deviations at the high and low ends correspond 

to extreme price outliers, which are difficult to capture in small datasets without ensemble learning 

or regularization. 
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Fig 7: Actual vs. Predicted Car Prices. 

This scatter  in fig.7 plot compares actual car prices with predicted values from the Decision Tree 

model. Points clustered near the diagonal red line (y = x) indicate accurate predictions. The plot 

shows that the model performs well across most price ranges, though deviations become slightly 

larger at higher price points, suggesting some underfitting on luxury vehicles. 

D. Error Distribution Analysis 

A deeper look at the distribution of prediction errors from the Decision Tree model reveals that: 

• Over 85% of predictions fell within a ±$2,500 error range 

• There was no strong systemic bias toward overestimation or underestimation 

• A small number of larger errors occurred on high-priced vehicles (above $30,000), 

suggesting limited representation of luxury vehicles in the training set 

A histogram of residual errors shows a bell-shaped curve centered around zero, indicating that 

most predictions are symmetrically distributed and that the model is not biased. 
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Fig 8:Prediction Error Distribution. 

This histogram  in fig.8 visualizes the distribution of prediction errors (Actual − Predicted) for 

the Decision Tree model. The bell-shaped curve is centered near zero, indicating that most 

predictions are close to actual values. The majority of errors fall within ±$2,500, confirming that the 

model is not significantly biased and performs consistently across the dataset. 

To further enrich the exploratory analysis, an extensive comparison was conducted between 

gasoline and diesel-powered vehicles using grouped visualizations of histograms, density plots, and 

scatter plots. This breakdown allowed for a deeper understanding of how fuel type affects the 

distribution of key features and how these features relate to price dynamics within each category.  

 

Fig 9:distribution of numerical attributes by fuel types 



 Polaris Global Journal of Scholarly Research and Trends 

Volume. 4, No. 1,May  2025, pp. 1-21 

 

16  

Awaz Ahmed Shaban, et al., 2025 

PGJSRT 

 
The histograms in fig.9 provided an immediate view of the frequency distribution of various 

numerical attributes across the two fuel types. As expected, gasoline-powered cars dominated the 

dataset in terms of volume. However, the few diesel vehicles exhibited distinct distribution 

characteristics, especially in features such as enginesize, curbweight, and horsepower, where they 

consistently occupied higher value ranges. The narrower, more focused distribution of diesel 

vehicles suggests their clustering in more specialized or performance-oriented segments such as 

utility vehicles or high-torque sedans. 

Moving to the KDE (Kernel Density Estimation) plots, these offered a smoother comparative view 

of the probability distributions. Diesel cars generally exhibited shifted and right-skewed density 

curves, indicating larger average physical dimensions and performance capabilities. For instance, 

diesel vehicles had significantly higher peaks in compression ratio, stroke, and boreratio, hinting at 

specialized engine configurations. Conversely, gasoline vehicles demonstrated broader, more 

uniform distributions across most variables, confirming their presence across both economy and 

performance markets. 

  

Fig 10:illustrated the direct relationship between key numerical features and price by fuel type 

The final set of scatter plots in fig.10 illustrated the direct relationship between key numerical 

features and price, segmented by fuel type. These plots revealed that diesel vehicles, although fewer, 

tended to occupy the upper ranges of both feature values and pricing, forming a sparse but clearly 

distinguishable cluster in the high-price domain. Gasoline vehicles showed stronger and denser 

correlations between features like horsepower and price, largely due to their prevalence and greater 

variance in the dataset. Interestingly, even in categories where gas vehicles are dominant, diesel 

variants consistently appeared as high-end outliers, reinforcing their role in the premium segment. 
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Fig 1: structural and performance attributes based on fuel type 

Collectively, these multi-plot in fig.11 visualizations highlight the systematic differences in 

structural and performance attributes based on fuel type. Diesel vehicles are heavier, more powerful, 

and more expensive, while gasoline cars offer a wider spread in design and pricing. From a modeling 

perspective, these insights suggest that fuel type should be retained as a categorical variable or used 

to construct interaction terms in models. It may even warrant separate model training tracks or 

ensemble components to optimize performance across the fuel spectrum. Overall, this targeted 

analysis substantiates the significance of fuel type not only as a standalone predictor but as a 

contextual layer that modifies how other features relate to price. 

E. Model compression  

To contextualize the performance of the proposed models, a benchmarking comparison was 

conducted against ten peer-reviewed studies published between 2022 and 2025, each employing 

different machine learning techniques for car price prediction. These studies span a variety of 

modeling paradigms, including gradient boosting, deep learning, ensemble stacking, and neural 

attention mechanisms, applied to datasets of varying sizes and regional scopes. Table 1 summarizes 

the key characteristics of these works, including the algorithms used, their best reported R² scores, 

dataset sizes, and methodological notes. This comparative synthesis not only situates our approach 

within the broader academic discourse but also highlights the prevailing dominance of ensemble-

based models—particularly XGBoost and Random Forest—across recent literature. In contrast, our 

study provides empirical evidence that even a single, interpretable model such as a Decision Tree 

Regressor can deliver performance on par with more complex frameworks when combined with 

high-quality preprocessing see table 9. 
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Table 9: Summary of Literature on Car Price Prediction (2022–2025) 

No. Authors Models Used Best R² 
Score 

Notes Dataset 
Size 

Ref 

1 Tolun et al. 
(2025) 

XGBoost, CNN, 
SARIMAX 

0.91 Hybrid architecture, 
ANOVA selection 

~5000 
records 

[7] 

2 Misbullah et al. 
(2024) 

XGBoost 0.91 Minimal tuning, ASEAN 
used cars 

~3000 
records 

[8] 

3 Cui et al. (2022) LightGBM, ANN, 
RF 

0.90 Gradient boosting 
dominant 

~2000 
records 

[9] 

4 Pillai (2022) CNN 0.89 Requires image data ~1000 
images 

[10] 

5 Ibrahim et al. 
(2025) 

Random Forest, 
LR 

0.88 Nigerian used car market 1279 
records 

[11] 

6 Nguyen et al. 
(2022) 

FFNN, RF 0.86 Vietnamese car resale 
dataset 

~700 
records 

[12] 

7 Uysal (2023) Self-Attentive NN 0.87 Interpretability via 
attention 

~1500 
records 

[13] 

8 Valarmathi et al. 
(2022) 

DNN, RF, XGBoost 
(stacked) 

0.89 Ensemble hybrid ~3000 
records 

[14] 

9 Saini & Rani 
(2023) 

XGBoost, RF 0.89 Indian OLX-like listings ~2300 
records 

[15] 

10 This Study 
(2025) 

DT, LR, MLP 0.886 Competitive performance 205 
records 

— 

 

In summary, the literature illustrates a consistent trend: ensemble methods such as XGBoost and 

Random Forest dominate in predictive accuracy, particularly on tabular data. Deep learning models 

like CNNs and FFNNs also show competitive results, but they often require large datasets, higher 

computational power, and complex tuning. Our study aims to test whether simpler, interpretable 

models like Decision Trees can still match the performance of these more complex systems. As 

shown in the benchmark comparison, our Decision Tree model (R² = 0.886) performs 

competitively, validating the practical utility of non-ensemble, single-model strategies when backed 

by robust preprocessing see fig.12. 

 

Fig 22: Distribution of best-performing machine learning models in car price prediction 
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F. Model Reliability and Generalization 

From a generalization perspective, the Decision Tree's performance suggests strong learning on 

structured features such as brand, engine size, and horsepower. Because tree-based models segment 

the data using feature thresholds, they are particularly good at mimicking discrete jumps in car 

prices (e.g., sharp increases for BMW or V6 engines), which are harder for linear or neural models to 

learn. 

The MLP’s underperformance underscores an important lesson in applied machine learning: 

model complexity should match data volume and quality. A simple model, when properly prepared 

and applied to well-engineered data, can outperform a deep neural network—especially when the 

latter is trained without sufficient data or tuning. 

Conclusion and Future Work 

This study explored the application of machine learning algorithms to predict car prices based on 

structured vehicle data. Three models were implemented and evaluated: Linear Regression, 

Decision Tree Regressor, and a basic Multilayer Perceptron Neural Network. Each model was 

assessed using multiple performance metrics—R² score, RMSE, and MAE—and evaluated through 

visualization, statistical summaries, and real-world interpretability. 

Among the models tested, the Decision Tree Regressor outperformed the others with an R² score 

of 0.886, demonstrating a high capacity to explain variance in car prices. It also yielded the lowest 

RMSE and MAE values, confirming both its accuracy and robustness. Linear Regression, while less 

precise, offered interpretability and served as a valuable baseline. The MLP Neural Network 

underperformed, likely due to overfitting and insufficient data volume, which underlines the 

limitations of deep learning on small tabular datasets. 

Beyond performance, the Decision Tree model proved favorable due to its simplicity, 

transparency, and rapid training. This highlights a central finding of the study: when feature 

engineering and preprocessing are done effectively, even simple models can rival complex 

architectures. Furthermore, the study’s benchmarking against ten recent academic papers showed 

that the Decision Tree's performance was competitive with widely used ensemble models like 

XGBoost and hybrid deep learning methods. 

From an industry perspective, these results suggest that interpretable ML models can be reliably 

deployed in pricing engines for online vehicle marketplaces, insurance calculators, and dealership 

platforms—especially in environments where transparency and ease of maintenance are prioritized. 

Although this study provided meaningful results, it also opened pathways for further exploration: 

• Model Tuning and Ensembles: Future experiments could involve hyperparameter 

tuning and ensemble techniques like Random Forest, Gradient Boosting, or stacking 

methods to push performance closer to state-of-the-art levels. 

• Additional Features: Incorporating external factors such as geographic location, time 

of year, vehicle condition, and historical pricing trends could further enhance prediction 

accuracy. 

• Larger, Real-World Datasets: Applying models to larger datasets from actual 

marketplace APIs or dealer inventories would test their generalizability. 
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• Explainable AI (XAI): For decision-makers in financial or retail sectors, integrating 

XAI tools like SHAP or LIME would make even complex models more transparent and 

actionable. 

In conclusion, this research demonstrates that well-prepared data, combined with thoughtfully 

selected models, can yield strong, interpretable results for real-world price prediction systems. By 

balancing accuracy, simplicity, and scalability, practitioners can design solutions that are both 

intelligent and practical. 
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