Overview of Metaheuristic Algorithms
DOI:
https://doi.org/10.58429/pgjsrt.v2n2a144Keywords:
Metaheuristics Algorithm, classifications, advantages and disadvantages, applicationsAbstract
Metaheuristic algorithms are optimization algorithms that are used to address complicated issues that cannot be solved using standard approaches. These algorithms are inspired by natural processes such as genetics, swarm behavior, and evolution, and they are used to explore a broad search space to identify the global optimum of a problem. Genetic algorithms, particle swarm optimization, ant colony optimization, simulated annealing, and tabu search are examples of popular metaheuristic algorithms. These algorithms have been widely utilized to address complicated issues in domains like as engineering, finance, and computer science. In general, the history of metaheuristic algorithms spans several decades and involves the development of various optimization algorithms that are inspired by natural systems. Metaheuristic algorithms have become a valuable tool in solving complex optimization problems in various fields, and they are likely to continue to play an important role in the development of new technologies and applications.
Downloads
References
Abdel-Basset, M., Abdel-Fatah, L., & Sangaiah, A. K. (2018). Metaheuristic Algorithms: A Comprehensive Review. In Computational Intelligence for Multimedia Big Data on the Cloud with Engineering Applications (pp. 185–231). Elsevier. https://doi.org/10.1016/B978-0-12-813314-9.00010-4
Asaad, Renas Rajab. (2014). An Investigation of the Neuronal Dynamics Under Noisy Rate Functions. Thesis (M.S.), Eastern Mediterranean University, Institute of Graduate Studies and Research, Dept. of Computer Engineering, Famagusta: North Cyprus.
Acan, A., Altincay, H., Tekol, Y., & Unveren, A. (n.d.). A genetic algorithm with multiple crossover operators for optimal frequency assignment problem. The 2003 Congress on Evolutionary Computation, 2003. CEC ’03., 256–263. https://doi.org/10.1109/CEC.2003.1299583
Asaad, R. R., Abdurahman, S. M., & Hani, A. A. (2017). Partial Image Encryption using RC4 Stream Cipher Approach and Embedded in an Image. Academic Journal of Nawroz University, 6(3), 40–45. https://doi.org/10.25007/ajnu.v6n3a76
Acan, A., & Unveren, A. (2007). A shared-memory ACO+GA hybrid for combinatorial optimization. 2007 IEEE Congress on Evolutionary Computation, 2078–2085. https://doi.org/10.1109/CEC.2007.4424729
Rajab Asaad, R., & Masoud Abdulhakim, R. (2021). The Concept of Data Mining and Knowledge Extraction Techniques. Qubahan Academic Journal, 1(2), 17–20. https://doi.org/10.48161/qaj.v1n2a43
Acan, A., & Ünveren, A. (2015). A great deluge and tabu search hybrid with two-stage memory support for quadratic assignment problem. Applied Soft Computing, 36, 185–203. https://doi.org/10.1016/j.asoc.2015.06.061
Asaad, R. R., Ahmad, H. B., & Ali, R. I. (2020). A Review: Big Data Technologies with Hadoop Distributed Filesystem and Implementing M/R. Academic Journal of Nawroz University, 9(1), 25–33. https://doi.org/10.25007/ajnu.v9n1a530
Acan, A., & Ünveren, A. (2020). Multiobjective great deluge algorithm with two-stage archive support. Engineering Applications of Artificial Intelligence, 87, 103239. https://doi.org/10.1016/j.engappai.2019.103239
Asaad, R. R. (2019). Güler and Linaro et al Model in an Investigation of the Neuronal Dynamics using noise Comparative Study. Academic Journal of Nawroz University, 8(3), 10–16. https://doi.org/10.25007/ajnu.v8n3a360
Agarwal, P., & Mehta, S. (2014). Nature-Inspired Algorithms: State-of-Art, Problems and Prospects. In International Journal of Computer Applications (Vol. 100, Issue 14).
Asaad, R. R. (2021). Penetration Testing: Wireless Network Attacks Method on Kali Linux OS. Academic Journal of Nawroz University, 10(1), 7–12. https://doi.org/10.25007/ajnu.v10n1a998
Agrawal, P., Abutarboush, H. F., Ganesh, T., & Mohamed, A. W. (2021). Metaheuristic Algorithms on Feature Selection: A Survey of One Decade of Research (2009-2019). IEEE Access, 9, 26766–26791. https://doi.org/10.1109/ACCESS.2021.3056407
Almufti, S., Marqas, R., & Asaad, R. (2019). Comparative study between elephant herding optimization (EHO) and U-turning ant colony optimization (U-TACO) in solving symmetric traveling salesman problem (STSP). Journal Of Advanced Computer Science & Technology, 8(2), 32.
Ahmad, S. (2022). Electromagnetic Field Optimization Based Selective Harmonic Elimination in a Cascaded Symmetric H-Bridge Inverter. Energies, 15(20), 7682. https://doi.org/10.3390/en15207682
Asaad, R. R., & Abdulnabi, N. L. (2018). Using Local Searches Algorithms with Ant Colony Optimization for the Solution of TSP Problems. Academic Journal of Nawroz University, 7(3), 1–6. https://doi.org/10.25007/ajnu.v7n3a193
Almufti, S. (2017). Using Swarm Intelligence for solving NPHard Problems. Academic Journal of Nawroz University, 6(3), 46–50. https://doi.org/10.25007/ajnu.v6n3a78
Almufti, S., Asaad, R., & Salim, B. (2018). Review on elephant herding optimization algorithm performance in solving optimization problems. International Journal of Engineering & Technology, 7, 6109-6114.
Almufti, S. (2021). The novel Social Spider Optimization Algorithm: Overview, Modifications, and Applications. ICONTECH INTERNATIONAL JOURNAL, 5(2), 32–51. https://doi.org/10.46291/icontechvol5iss2pp32-51
Asaad, R. R., & Ali, R. I. (2019). Back Propagation Neural Network(BPNN) and Sigmoid Activation Function in Multi-Layer Networks. Academic Journal of Nawroz University, 8(4), 216–221. https://doi.org/10.25007/ajnu.v8n4a464
Almufti, S. (2022). Vibrating Particles System Algorithm: Overview, Modifications and Applications. ICONTECH INTERNATIONAL JOURNAL, 6(3), 1–11. https://doi.org/10.46291/icontechvol6iss3pp1-11
Rajab Asaad, R. (2021). Review on Deep Learning and Neural Network Implementation for Emotions Recognition . Qubahan Academic Journal, 1(1), 1–4. https://doi.org/10.48161/qaj.v1n1a25
Almufti, S. M. (n.d.-a). Artificial Bee Colony Algorithm performances in solving Welded Beam Design problem. 28. https://doi.org/10.24297/j.cims.2022.12.17
Asaad, R. R., Abdulrahman, S. M., & Hani, A. A. (2017). Advanced Encryption Standard Enhancement with Output Feedback Block Mode Operation. Academic Journal of Nawroz University, 6(3), 1–10. https://doi.org/10.25007/ajnu.v6n3a70
Almufti, S. M. (n.d.-b). U-Turning Ant Colony Algorithm powered by Great Deluge Algorithm for the solution of TSP Problem.
Abdulfattah, G. M., Ahmad, M. N., & Asaad, R. R. (2018). A reliable binarization method for offline signature system based on unique signer’s profile. INTERNATIONAL JOURNAL OF INNOVATIVE COMPUTING INFORMATION AND CONTROL, 14(2), 573-586.
Almufti, S. M. (2022a). Lion algorithm: Overview, modifications and applications E I N F O. International Research Journal of Science, 2(2), 176–186. https://doi.org/10.5281/zenodo.6973555
Almufti, S. M. (2022b). Vibrating Particles System Algorithm performance in solving Constrained Optimization Problem. Academic Journal of Nawroz University, 11(3), 231–242. https://doi.org/10.25007/ajnu.v11n3a1499
Almufti, S. M., Ahmad, H. B., Marqas, R. B., & Asaad, R. R. (2021). Grey wolf optimizer: Overview, modifications and applications. International Research Journal of Science, Technology, Education,and Management, 1(1),1-1.
Asaad, R. R., Sulaiman, Z. A., & Abdulmajeed, S. S. (2019). Proposed System for Education Augmented Reality Self English Learning. Academic Journal of Nawroz University, 8(3), 27–32. https://doi.org/10.25007/ajnu.v8n3a366
Almufti, S. M., Alkurdi, A. A. H., & Khoursheed, E. A. (n.d.). Artificial Bee Colony Algorithm Performances in Solving Constraint-Based Optimization Problem. 21, 2022.
Almufti, S. M., Asaad, R. R., & Salim, B. W. (2018). Review on Elephant Herding Optimization Algorithm Performance in Solving Optimization Problems. Article in International Journal of Engineering and Technology, 7(4), 6109–6114. https://doi.org/10.14419/ijet.v7i4.23127
Asaad, R. R. (2020). Implementation of a Virus with Treatment and Protection Methods. ICONTECH INTERNATIONAL JOURNAL, 4(2), 28-34. https://doi.org/10.46291/ICONTECHvol4iss2pp28-34
Almufti, S. M., Saeed, V. A., & Marqas, R. B. (n.d.). Taxonomy of Bio-Inspired Optimization Algorithms.
Almufti, S. M., & Shaban, A. A. (2018). U-Turning Ant Colony Algorithm for Solving Symmetric Traveling Salesman Problem. Academic Journal of Nawroz University, 7(4), 45. https://doi.org/10.25007/ajnu.v7n4a270
Boya Marqas, R., M. Almufti, S., & Rajab Asaad, R. (2022). FIREBASE EFFICIENCY IN CSV DATA EXCHANGE THROUGH PHP-BASED WEBSITES. Academic Journal of Nawroz University, 11(3), 410–414. https://doi.org/10.25007/ajnu.v11n3a1480
Bäck, T., & Schwefel, H.-P. (1993). An Overview of Evolutionary Algorithms for Parameter Optimization. Evolutionary Computation, 1(1), 1–23. https://doi.org/10.1162/evco.1993.1.1.1
Ihsan, R. R., Almufti, S. M., Ormani, B. M., Asaad, R. R., & Marqas, R. B. (2021). A survey on Cat Swarm Optimization algorithm. Asian J. Res. Comput. Sci, 10, 22-32.
Bartz-Beielstein, T., Branke, J., Mehnen, J., & Mersmann, O. (2014). Evolutionary Algorithms. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 4(3), 178–195. https://doi.org/10.1002/widm.1124
Rajab Asaad, R., & Luqman Abdulnabi, N. (2022). A Review on Big Data Analytics between Security and Privacy Issue. Academic Journal of Nawroz University, 11(3), 178–184. https://doi.org/10.25007/ajnu.v11n3a1446
Bhuvaneswari, M., Hariraman, S., Anantharaj, B., Balaji, N., & Professor, A. (2014). Nature Inspired Algorithms: A Review. In International Journal of Emerging Technology in Computer Science & Electronics (IJETCSE) (Vol. 12).
Yahya Hussien , A., & Rajab Asaad, R. (2022). Review on Social Media and Digital Security. Qubahan Academic Journal, 2(2), 1–4. https://doi.org/10.48161/qaj.v2n2a119
Dehghani, M., Trojovská, E., & Trojovský, P. (2022). A new human-based metaheuristic algorithm for solving optimization problems on the base of simulation of driving training process. Scientific Reports, 12(1), 9924. https://doi.org/10.1038/s41598-022-14225-7
Asaad, R. R. (2022). Keras Deep Learning for Pupil Detection Method . Academic Journal of Nawroz University, 10(4), 240–250. https://doi.org/10.25007/ajnu.v10n4a1328
Dhiman, G., & Kumar, V. (2017). Spotted hyena optimizer: A novel bio-inspired based metaheuristic technique for engineering applications. Advances in Engineering Software, 114, 48–70. https://doi.org/10.1016/j.advengsoft.2017.05.014
Asaad, R. R., & Segerey, R. I. (2018). School Management Application Using iOS. Academic Journal of Nawroz University, 7(4), 38–44. https://doi.org/10.25007/ajnu.v7n4a269
Asaad, R. R., Mustafa, R. F., & Hussien, S. I. (2020). Mortality Statistics and Cause of Death at Duhok City from The Period (2014-2019) Using R Language Data Analytics. Academic Journal of Nawroz University, 9(3), 1–7. https://doi.org/10.25007/ajnu.v9n3a699
Dubey, H. M., Panigrahi, B. K., & Pandit, M. (2014). Bio-inspired optimisation for economic load dispatch: A review. International Journal of Bio-Inspired Computation, 6(1), 7–21. https://doi.org/10.1504/IJBIC.2014.059967
Asaad, R. R. (2021). A Study on Instruction Formats on Computer Organization and Architecture. ICONTECH INTERNATIONAL JOURNAL, 5(2), 18-24. https://doi.org/10.46291/ICONTECHvol5iss2pp18-24
Ridwan B. Marqas, Saman M. Almufti, Pawan Shivan Othman, & Chyavan Mohammed Abdulrahman. (2020). Evaluation of EHO, U-TACO and TS Metaheuristics algorithms in Solving TSP. JOURNAL OF XI’AN UNIVERSITY OF ARCHITECTURE & TECHNOLOGY, XII(IV). https://doi.org/10.37896/jxat12.04/1062
Asaad, R. R. (2021). Virtual reality and augmented reality technologies: A closer look. Virtual reality, 1(2).
Fister, I., Fister, I., Yang, X.-S., & Brest, J. (2013). A comprehensive review of firefly algorithms. Swarm and Evolutionary Computation, 13, 34–46. https://doi.org/10.1016/j.swevo.2013.06.001
Asaad, R. R. A Review: Emotion Detection and Recognition with Implementation on Deep Learning/Neural Network.
Fister, I., Yang, X.-S., Fister, I., Brest, J., & Fister, D. (2013a). A Brief Review of Nature-Inspired Algorithms for Optimization. http://arxiv.org/abs/1307.4186
Asaad, R. R., Saeed, V. A., & Abdulhakim, R. M. (2021). Smart Agent and it’s effect on Artificial Intelligence: A Review Study. ICONTECH INTERNATIONAL JOURNAL, 5(4), 1-9.
Fister, I., Yang, X.-S., Fister, I., Brest, J., & Fister, D. (2013b). A Brief Review of Nature-Inspired Algorithms for Optimization. http://arxiv.org/abs/1307.4186
Asaad, R. R. A Asaad, R. R. A Review: Emotion Detection and Recognition with Implementation on Deep Learning/Neural Network.
Gogna, A., & Tayal, A. (2013). Metaheuristics: review and application. Journal of Experimental & Theoretical Artificial Intelligence, 25(4), 503–526. https://doi.org/10.1080/0952813X.2013.782347
Asaad, R. R., & Saeed, V. A. (2022). A Cyber Security Threats, Vulnerability, Challenges and Proposed Solution. Applied Computing Journal, 2(4), 227-244. https://doi.org/10.52098/acj.202260
Jahwar, A. F., Mohsin Abdulazeez, A., Zeebaree, D. Q., Asaad Zebari, D., & Ahmed, F. Y. H. (2021). An Integrated Gapso Approach for Solving Problem of an Examination Timetabiking System. 2021 IEEE Symposium on Industrial Electronics & Applications (ISIEA), 1–6. https://doi.org/10.1109/ISIEA51897.2021.9509984
Renas Rajab Asaad. (2022). Support vector machine classification learning algorithm for diabetes prediction. International Research Journal of Science, Technology, Education, and Management, 2(2), 26–34. https://doi.org/10.5281/zenodo.6975670
Kennedy, J., & Eberhart, R. (n.d.). Particle swarm optimization. Proceedings of ICNN’95 - International Conference on Neural Networks, 1942–1948. https://doi.org/10.1109/ICNN.1995.488968
Ferinia, R., Kumar, D.L.S., Kumar, B.S. et al. Factors determining customers desire to analyse supply chain management in intelligent IoT. J Comb Optim 45, 72 (2023). https://doi.org/10.1007/s10878-023-01007-8
Klau, G. W., Lesh, N., Marks, J., & Mitzenmacher, M. (2010). Human-guided search. Journal of Heuristics, 16(3), 289–310. https://doi.org/10.1007/s10732-009-9107-5
Luis, J., & Sequera, C. (n.d.). 7 Tune Up of a Genetic Algorithm to Group Documentary Collections. www.intechopen.com
M. Almufti, S. (2019). Historical survey on metaheuristics algorithms. International Journal of Scientific World, 7(1), 1. https://doi.org/10.14419/ijsw.v7i1.29497
M. Almufti, S. (2022). Hybridizing Ant Colony Optimization Algorithm for Optimizing Edge-Detector Techniques. Academic Journal of Nawroz University, 11(2), 135–145. https://doi.org/10.25007/ajnu.v11n2a1320
M. Almufti, S., Yahya Zebari, A., & Khalid Omer, H. (2019). A comparative study of particle swarm optimization and genetic algorithm. Journal of Advanced Computer Science & Technology, 8(2), 40. https://doi.org/10.14419/jacst.v8i2.29401
Poornima, E., Muthu, B., Agrawal, R. et al. Fog robotics-based intelligence transportation system using line-of-sight intelligent transportation. Multimed Tools Appl (2023). https://doi.org/10.1007/s11042-023-15086-6
Marashdih, A. W., Zaaba, Z. F., Almufti, S. M., & Fitri Zaaba, Z. (2018). The Problems and Challenges of Infeasible Paths in Static Analysis Bat Algorithm (BA): Literature Review various types and its Applications View project Hybrid Metaheuristic in solving NP-Hard Problem View project The Problems and Challenges of Infeasible Paths in Static Analysis. International Journal of Engineering & Technology, 412–417. https://doi.org/10.14419/ijet.v7i4.19.23175
Marques, V. M., Reis, C., & Machado, J. A. T. (2010). Interactive Evolutionary Computation in music. 2010 IEEE International Conference on Systems, Man and Cybernetics, 3501–3507. https://doi.org/10.1109/ICSMC.2010.5642417
D. A. Zebari, S. S. Sadiq and D. M. Sulaiman, "Knee Osteoarthritis Detection Using Deep Feature Based on Convolutional Neural Network," 2022 International Conference on Computer Science and Software Engineering (CSASE), Duhok, Iraq, 2022, pp. 259-264, doi: 10.1109/CSASE51777.2022.9759799.
Mishra, A., & Mishra Scholar, A. (2017). Nature Inspired Algorithms: A Survey of the State of the Art Theoretical Analysis of Genetic Algorithms View project Nature Inspired Algorithms: A Survey of the State of the Art. International Journal of Advance Research in Computer Science and Management Studies, 5(9). https://www.researchgate.net/publication/320864248
D. A. Zebari, D. M. Sulaiman, S. S. Sadiq, N. A. Zebari and M. S. Salih, "Automated Detection of Covid-19 from X-ray Using SVM," 2022 4th International Conference on Advanced Science and Engineering (ICOASE), Zakho, Iraq, 2022, pp. 130-135, doi: 10.1109/ICOASE56293.2022.10075586.
Mohammed Almufti, S., Maribojoc, R. P., & Pahuriray, A. V. (2022). Ant Based System: Overview, Modifications and Applications from 1992 to 2022. Polaris Global Journal of Scholarly Research and Trends, 1(1), 29–37. https://doi.org/10.58429/pgjsrt.v1n1a85
Mohammed, H.J.; Al-Fahdawi, S.; Al-Waisy, A.S.; Zebari, D.A.; Ibrahim, D.A.; Mohammed, M.A.; Kadry, S.; Kim, J. ReID-DeePNet: A Hybrid Deep Learning System for Person Re-Identification. Mathematics 2022, 10, 3530. https://doi.org/10.3390/math10193530
Narayanan, A., & Moore, M. (n.d.). Quantum-inspired genetic algorithms. Proceedings of IEEE International Conference on Evolutionary Computation, 61–66. https://doi.org/10.1109/ICEC.1996.542334
Arshad, M.; Saeed, M.; Rahman, A.U.; Zebari, D.A.; Mohammed, M.A.; Al-Waisy, A.S.; Albahar, M.; Thanoon, M. The Assessment of Medication Effects in Omicron Patients through MADM Approach Based on Distance Measures of Interval-Valued Fuzzy Hypersoft Set. Bioengineering 2022, 9, 706. https://doi.org/10.3390/bioengineering9110706
Ibrahim, D. A., Zebari, D. A., Mohammed, H. J., & Mohammed, M. A. (2022). Effective hybrid deep learning model for COVID-19 patterns identification using CT images. Expert Systems, 39( 10), e13010. https://doi.org/10.1111/exsy.13010
D. A. Zebari, H. Haron, D. M. Sulaiman, Y. Yusoff and M. N. Mohd Othman, "CNN-based Deep Transfer Learning Approach for Detecting Breast Cancer in Mammogram Images," 2022 IEEE 10th Conference on Systems, Process & Control (ICSPC), Malacca, Malaysia, 2022, pp. 256-261, doi: 10.1109/ICSPC55597.2022.10001781.
Qian, Z., Bi, Z., Cao, Q., Ju, W., Teng, H., Zheng, Y., & Zheng, S. (2017). Expert-guided evolutionary algorithm for layout design of complex space stations. Enterprise Information Systems, 11(7), 1078–1093. https://doi.org/10.1080/17517575.2016.1150521
Rai, D., & Tyagi, K. (2013). Bio-inspired optimization techniques. ACM SIGSOFT Software Engineering Notes, 38(4), 1–7. https://doi.org/10.1145/2492248.2492271
Rashedi, E., Nezamabadi-pour, H., & Saryazdi, S. (2009). GSA: A Gravitational Search Algorithm. Information Sciences, 179(13), 2232–2248. https://doi.org/10.1016/j.ins.2009.03.004
Rere, L. M. R., Fanany, M. I., & Arymurthy, A. M. (2016). Metaheuristic Algorithms for Convolution Neural Network. Computational Intelligence and Neuroscience, 2016, 1–13. https://doi.org/10.1155/2016/1537325
Sadeeq, H. T., Abdulazeez, A. M., Kako, N. A., Zebari, D. A., & Zeebaree, D. Q. (2021). A New Hybrid Method for Global Optimization Based on the Bird Mating Optimizer and the Differential Evolution. 2021 7th International Engineering Conference “Research & Innovation amid Global Pandemic" (IEC), 54–60. https://doi.org/10.1109/IEC52205.2021.9476147
Selvaraj, C., & Kumar, S. R. (n.d.). A Survey on Application of Bio-Inspired Algorithms. www.ijcsit.com
Sharif, O., Unveren, A., & Acan, A. (2009). Evolutionary Multi-Objective optimization for nurse scheduling problem. 2009 Fifth International Conference on Soft Computing, Computing with Words and Perceptions in System Analysis, Decision and Control, 1–4. https://doi.org/10.1109/ICSCCW.2009.5379458
D. A. Zebari, A. R. Abrahim, D. A. Ibrahim, G. M. Othman and F. Y. H. Ahmed, "Analysis of Dense Descriptors in 3D Face Recognition," 2021 IEEE 11th International Conference on System Engineering and Technology (ICSET), Shah Alam, Malaysia, 2021, pp. 171-176, doi: 10.1109/ICSET53708.2021.9612430.
Sherinov, Z., & Ünveren, A. (2018). Multi-objective imperialistic competitive algorithm with multiple non-dominated sets for the solution of global optimization problems. Soft Computing, 22(24), 8273–8288. https://doi.org/10.1007/s00500-017-2773-6
Sherinov, Z., Unveren, A., & Acan, A. (2011). An evolutionary multi-objective modeling and solution approach for fuzzy vehicle routing problem. 2011 International Symposium on Innovations in Intelligent Systems and Applications, 450–454. https://doi.org/10.1109/INISTA.2011.5946143
D. A. Zebari, D. A. Ibrahim and A. Al-Zebari, "Suspicious Region Segmentation Using Deep Features in Breast Cancer Mammogram Images," 2022 International Conference on Computer Science and Software Engineering (CSASE), Duhok, Iraq, 2022, pp. 253-258, doi: 10.1109/CSASE51777.2022.9759633.
Sherinov, Z., Ünveren, A., & Acan, A. (2018). Imperialist Competitive Algorithm with Updated Assimilation for the Solution of Real Valued Optimization Problems. International Journal on Artificial Intelligence Tools, 27(02), 1850005. https://doi.org/10.1142/S0218213018500057
Kapoor, N.R.; Kumar, A.; Kumar, A.; Zebari, D.A.; Kumar, K.; Mohammed, M.A.; Al-Waisy, A.S.; Albahar, M.A. Event-Specific Transmission Forecasting of SARS-CoV-2 in a Mixed-Mode Ventilated Office Room Using an ANN. Int. J. Environ. Res. Public Health 2022, 19, 16862. https://doi.org/10.3390/ijerph192416862
Shivan Othman, P., Rebar Ihsan, R., Marqas, R. B., Almufti, S. M., & Author, C. (2020). Image Processing Techniques for Identifying Impostor Documents Through Digital Forensic Examination-Region, Iraq 4* (Vol. 62, Issue 04).
Mustafa Zebari, G. ., Assad Zebari, D. . ., & Al-zebari, A. . (2021). FUNDAMENTALS OF 5G CELLULAR NETWORKS: A REVIEW. Journal of Information Technology and Informatics, 1(1), 1–5. https://doi.org/10.6084
Taha Chicho, B., Mohsin Abdulazeez, A., Qader Zeebaree, D., & Assad Zebari, D. (2021). Machine Learning Classifiers Based Classification For IRIS Recognition. Qubahan Academic Journal, 1(2), 106–118. https://doi.org/10.48161/qaj.v1n2a48
Sinha, N., Chakrabarti, R., & Chattopadhyay, P. K. (2003). Evolutionary programming techniques for economic load dispatch. IEEE Transactions on Evolutionary Computation, 7(1), 83–94. https://doi.org/10.1109/TEVC.2002.806788
Kapoor, N.R.; Kumar, A.; Kumar, A.; Zebari, D.A.; Kumar, K.; Mohammed, M.A.; Al-Waisy, A.S.; Albahar, M.A. Event-Specific Transmission Forecasting of SARS-CoV-2 in a Mixed-Mode Ventilated Office Room Using an ANN. Int. J. Environ. Res. Public Health 2022, 19, 16862. https://doi.org/10.3390/ijerph192416862
Soler-Dominguez, A., Juan, A. A., & Kizys, R. (2018). A Survey on Financial Applications of Metaheuristics. ACM Computing Surveys, 50(1), 1–23. https://doi.org/10.1145/3054133
D. A. Zebari, D. M. Sulaiman, S. S. Sadiq, N. A. Zebari and M. S. Salih, "Automated Detection of Covid-19 from X-ray Using SVM," 2022 4th International Conference on Advanced Science and Engineering (ICOASE), Zakho, Iraq, 2022, pp. 130-135, doi: 10.1109/ICOASE56293.2022.10075586.
Sun, Y., Wierstra, D., Schaul, T., & Schmidhuber, J. (2009). Efficient natural evolution strategies. Proceedings of the 11th Annual Conference on Genetic and Evolutionary Computation, 539–546. https://doi.org/10.1145/1569901.1569976
D. A. Zebari, H. Haron, D. M. Sulaiman, Y. Yusoff and M. N. Mohd Othman, "CNN-based Deep Transfer Learning Approach for Detecting Breast Cancer in Mammogram Images," 2022 IEEE 10th Conference on Systems, Process & Control (ICSPC), Malacca, Malaysia, 2022, pp. 256-261, doi: 10.1109/ICSPC55597.2022.10001781.
Vergin, M., Sarobin, R., Ganesan, R., Eu, A., & Sarobin, M. V. R. (2015). P A SWARM INTELLIGENCE IN WIRELESS SENSOR NETWORKS: A SURVEY. International Journal of Pure and Applied Mathematics, 101(5), 773–807.
Ur Rahman, A.; Saeed, M.; Saeed, M.H.; Zebari, D.A.; Albahar, M.; Abdulkareem, K.H.; Al-Waisy, A.S.; Mohammed, M.A. A Framework for Susceptibility Analysis of Brain Tumours Based on Uncertain Analytical Cum Algorithmic Modeling. Bioengineering 2023, 10, 147. https://doi.org/10.3390/bioengineering10020147
D. A. Zebari, D. A. Ibrahim and A. Al-Zebari, "Suspicious Region Segmentation Using Deep Features in Breast Cancer Mammogram Images," 2022 International Conference on Computer Science and Software Engineering (CSASE), Duhok, Iraq, 2022, pp. 253-258, doi: 10.1109/CSASE51777.2022.9759633.
Yang, X.-S. (n.d.). Harmony Search as a Metaheuristic Algorithm. In Music-Inspired Harmony Search Algorithm (pp. 1–14). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-00185-7_1
Zhang, J., Fiers, P., Witte, K. A., Jackson, R. W., Poggensee, K. L., Atkeson, C. G., & Collins, S. H. (2017). Human-in-the-loop optimization of exoskeleton assistance during walking. Science, 356(6344), 1280–1284. https://doi.org/10.1126/science.aal5054
Zhengming Wan, & Zhao-Liang Li. (1997). A physics-based algorithm for retrieving land-surface emissivity and temperature from EOS/MODIS data. IEEE Transactions on Geoscience and Remote Sensing, 35(4), 980–996. https://doi.org/10.1109/36.602541
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Saman M. Almufti, Awaz Ahmad Shaban, Rasan Ismael Ali, Jayson A. Dela Fuente
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.