Performance Analysis of the Firefly Algorithm on Classical Benchmark Optimization Problems
DOI:
https://doi.org/10.58429/pgjsrt.v4n3a221Keywords:
Firefly Algorithm, Nature-Inspired, Population-Based, MetaheuristicAbstract
This paper presents an exhaustive empirical investigation of the Firefly Algorithm (FA), a nature-inspired metaheuristic optimization technique, applied to 23 classical benchmark optimization problems. Through systematic experimentation across diverse function landscapes—including unimodal, multimodal, separable, non-separable, regular, and irregular functions—we evaluate the algorithm's convergence characteristics, solution quality, computational efficiency, and robustness. Our comprehensive analysis reveals that FA demonstrates exceptional performance on multimodal optimization problems, achieving competitive results compared to established algorithms like Particle Swarm Optimization and Genetic Algorithms. The algorithm's inherent ability to automatically subdivide populations into subgroups enables effective exploration of multiple optima simultaneously. Statistical validation through Wilcoxon signed-rank tests confirms FA's superior performance on 18 out of 23 benchmark functions compared to traditional approaches. This study provides valuable insights into parameter sensitivity, convergence behavior, and practical implementation considerations, establishing FA as a robust and versatile optimization tool for complex engineering and scientific applications.
Downloads
References
X.-S. Yang and S. Deb, “Engineering Optimisation by Cuckoo Search,” May 2010, [Online]. Available: http://arxiv.org/abs/1005.2908
L. Cagnina, S. C. Esquivel, C. A. C. Coello, L. C. Cagnina, and S. C. Esquivel, “Solving Engineering Optimization Problems with the Simple Constrained Particle Swarm Optimizer,” 2008. [Online]. Available: https://www.researchgate.net/publication/220166414
D. Q. Zeebaree, H. Haron, A. Mohsin Abdulazeez, and S. R. M. Zeebaree, “Combination of K-means clustering with Genetic Algorithm: A review,” 2017. [Online]. Available: http://www.ripublication.com
J. Ding, Q. Wang, Q. Zhang, Q. Ye, and Y. Ma, “A Hybrid Particle Swarm Optimization-Cuckoo Search Algorithm and Its Engineering Applications,” Math Probl Eng, vol. 2019, pp. 1–12, Mar. 2019, doi: 10.1155/2019/5213759.
S. M. Almufti, A. Yahya Zebari, and H. Khalid Omer, “A comparative study of particle swarm optimization and genetic algorithm,” Journal of Advanced Computer Science & Technology, vol. 8, no. 2, p. 40, Oct. 2019, doi: 10.14419/jacst.v8i2.29401.
S. M. Almufti, R. Boya Marqas, and R. R. Asaad, “Comparative study between elephant herding optimization (EHO) and U-turning ant colony optimization (U-TACO) in solving symmetric traveling salesman problem (STSP),” Journal of Advanced Computer Science & Technology, vol. 8, no. 2, p. 32, Aug. 2019, doi: 10.14419/jacst.v8i2.29403.
S. Mohammed Almufti, R. P. Maribojoc, and A. V. Pahuriray, “Ant Based System: Overview, Modifications and Applications from 1992 to 2022,” Polaris Global Journal of Scholarly Research and Trends, vol. 1, no. 1, pp. 29–37, Oct. 2022, doi: 10.58429/pgjsrt.v1n1a85.
I. Fister, I. Fister, X.-S. Yang, and J. Brest, “A comprehensive review of firefly algorithms,” Swarm Evol Comput, vol. 13, pp. 34–46, Dec. 2013, doi: 10.1016/j.swevo.2013.06.001.
M. K. Sayadi, R. Ramezanian, and N. Ghaffari-Nasab, “A discrete firefly meta-heuristic with local search for makespan minimization in permutation flow shop scheduling problems,” International Journal of Industrial Engineering Computations, vol. 1, no. 1, pp. 1–10, Jul. 2010, doi: 10.5267/j.ijiec.2010.01.001.
X.-S. Yang, “Firefly Algorithm, Lévy Flights and Global Optimization,” in Research and Development in Intelligent Systems XXVI, London: Springer London, 2010, pp. 209–218. doi: 10.1007/978-1-84882-983-1_15.
X.-S. Yang, “Firefly Algorithms for Multimodal Optimization,” 2009, pp. 169–178. doi: 10.1007/978-3-642-04944-6_14.
S. Q. Salih, A. A. Alsewari, and Z. M. Yaseen, “Pressure Vessel Design Simulation,” in Proceedings of the 2019 8th International Conference on Software and Computer Applications, New York, NY, USA: ACM, Feb. 2019, pp. 120–124. doi: 10.1145/3316615.3316643.
S. M. Almufti, “U-Turning Ant Colony Algorithm powered by Great Deluge Algorithm for the solution of TSP Problem.”
S. M. Almufti, “Artificial Bee Colony Algorithm performances in solving Welded Beam Design problem,” Computer Integrated Manufacturing Systems, vol. 28, 2022, doi: 10.24297/j.cims.2022.12.17.
A. A. H. Alkurdi, “Optimization of Welded Beam Design Problem Using Water Evaporation Optimization Algorithm,” Academic Journal of Nawroz University, vol. 12, no. 3, pp. 499–509, Aug. 2023, doi: 10.25007/ajnu.v12n3a1753.
B. Shojaei, H. Dashti Naserabadi, and M. J. Taheri Amiri, “Optimizing Competency-Based Human Resource Allocation in Construction Project Scheduling: A Multi-Objective Meta-Heuristic Approach,” Qubahan Academic Journal, vol. 4, no. 3, pp. 861–881, Sep. 2024, doi: 10.48161/qaj.v4n3a1027.
I. Mahmood Ibrahim et al., “Task Scheduling Algorithms in Cloud Computing: A Review,” 2021.
A. H. Gandomi, X.-S. Yang, and A. H. Alavi, “Mixed variable structural optimization using Firefly Algorithm,” Comput Struct, vol. 89, no. 23–24, pp. 2325–2336, Dec. 2011, doi: 10.1016/j.compstruc.2011.08.002.
S. M. Almufti, A. Ahmad Shaban, R. Ismael Ali, and J. A. Dela Fuente, “Overview of Metaheuristic Algorithms,” Polaris Global Journal of Scholarly Research and Trends, vol. 2, no. 2, pp. 10–32, Apr. 2023, doi: 10.58429/pgjsrt.v2n2a144.
V. Plevris and G. Solorzano, “A Collection of 30 Multidimensional Functions for Global Optimization Benchmarking,” Data (Basel), vol. 7, no. 4, p. 46, Apr. 2022, doi: 10.3390/data7040046.
A. Ahmed Shaban, S. M. Almufti, and R. R. Asaad, “Metaheuristic Algorithms for Engineering and CombinatorialOptimization: A Comparative Study Across Problems Categories and Benchmarks,” International Journal of Scientific World, vol. 11, no. 2, pp. 38–49, Aug. 2025, doi: 10.14419/0hndc578.
K. Hussain, M. N. Mohd Salleh, S. Cheng, and R. Naseem, “Common Benchmark Functions for Metaheuristic Evaluation: A Review,” JOIV : International Journal on Informatics Visualization, vol. 1, no. 4–2, p. 218, Nov. 2017, doi: 10.30630/joiv.1.4-2.65.
Z. Guan, C. Ren, J. Niu, P. Wang, and Y. Shang, “Great Wall Construction Algorithm: A novel meta-heuristic algorithm for engineer problems,” Expert Syst Appl, vol. 233, p. 120905, Dec. 2023, doi: 10.1016/j.eswa.2023.120905.
H. T. Öztürk and H. T. Kahraman, “Meta-heuristic search algorithms in truss optimization: Research on stability and complexity analyses,” Appl Soft Comput, vol. 145, p. 110573, Sep. 2023, doi: 10.1016/j.asoc.2023.110573.
S. M. Almufti, R. B. Marqas, P. S. Othman, and A. B. Sallow, “Single-based and population-based metaheuristics for solving np-hard problems,” Iraqi Journal of Science, vol. 62, no. 5, pp. 1710–1720, May 2021, doi: 10.24996/ijs.2021.62.5.34.
J. Kudela and R. Matousek, “New Benchmark Functions for Single-Objective Optimization Based on a Zigzag Pattern,” IEEE Access, vol. 10, pp. 8262–8278, 2022, doi: 10.1109/ACCESS.2022.3144067.
S. M. Almufti, “Historical survey on metaheuristics algorithms,” International Journal of Scientific World, vol. 7, no. 1, p. 1, Nov. 2019, doi: 10.14419/ijsw.v7i1.29497.
A. A. Shaban, S. M. Almufti, R. R. Asaad, and R. B. Marqas, “Swarm-Based Optimisation Strategies for Structural Engineering: A Case Study on Welded Beam Design,” FMDB Transactions on Sustainable Computer Letters, vol. 3, no. 1, pp. 01–11, Mar. 2025, doi: 10.69888/FTSCL.2025.000355.
M. Ilchi Ghazaan and A. Kaveh, “A new meta-heuristic algorithm: vibrating particles system,” Scientia Iranica, vol. 24, no. 2, pp. 551–566, Apr. 2017, doi: 10.24200/sci.2017.2417.
S. Almufti, “Vibrating Particles System Algorithm: Overview, Modifications and Applications,” ICONTECH INTERNATIONAL JOURNAL, vol. 6, no. 3, pp. 1–11, Sep. 2022, doi: 10.46291/icontechvol6iss3pp1-11.
S. M. Almufti, “Vibrating Particles System Algorithm performance in solving Constrained Optimization Problem,” Academic Journal of Nawroz University, vol. 11, no. 3, pp. 231–242, Aug. 2022, doi: 10.25007/ajnu.v11n3a1499.
A. Kaveh, S. R. Hoseini Vaez, and P. Hosseini, “MATLAB CODE FOR AN ENHANCED VIBRATING PARTICLES SYSTEM ALGORITHM,” 2018.
Y. Shi and R. Eberhart, “A modified particle swarm optimizer,” in 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360), IEEE, pp. 69–73. doi: 10.1109/ICEC.1998.699146.
A. Kaveh, S. Talatahari, and S. Talatahari, “Engineering optimization withhybrid particle swarm and ant colony optimization Set theoretical framework for meta-heuristic optimization algorithm View project ENGINEERING OPTIMIZATION WITH HYBRID PARTICLE SWARM AND ANT COLONY OPTIMIZATION,” 2009. [Online]. Available: https://www.researchgate.net/publication/228667380
S. M. Almufti, “U-Turning Ant Colony Algorithm powered by Great Deluge Algorithm for the solution of TSP Problem,” 2015.
E. Cuevas, M. Cienfuegos, D. Zaldívar, and M. Pérez-Cisneros, “A swarm optimization algorithm inspired in the behavior of the social-spider,” 2013.
S. Almufti, “The novel Social Spider Optimization Algorithm: Overview, Modifications, and Applications,” ICONTECH INTERNATIONAL JOURNAL, vol. 5, no. 2, pp. 32–51, Jun. 2021, doi: 10.46291/icontechvol5iss2pp32-51.
S. Feng, Y. Hu, Y. Chen, and M. Huang, “An improved spider optimization algorithm coordinated by pheromones,” Sci Rep, vol. 12, no. 1, p. 5962, Apr. 2022, doi: 10.1038/s41598-022-09800-x.
S. M. Almufti, “Fusion of Water Evaporation Optimization and Great Deluge: A Dynamic Approach for Benchmark Function Solving,” Fusion: Practice and Applications, vol. 13, no. 1, pp. 19–36, 2023, doi: 10.54216/FPA.130102.
O. K. Erol, O. Hasançebi, and S. Kazemzadeh Azad, “Evaluating efficiency of big-bang big-crunch algorithm in benchmark engineering optimization problems,” INTERNATIONAL JOURNAL OF OPTIMIZATION IN CIVIL ENGINEERING, vol. 3, pp. 495–505, 2011.
S. K. Azad, O. Hasançebi, S. K. Azad, and O. K. Erol, “Evaluating efficiency of big-bang big-crunch algorithm in benchmark engineering optimization problems,” 2011. [Online]. Available: https://www.researchgate.net/publication/260288633
S. M. Almufti, “Exploring the Impact of Big Bang-Big Crunch Algorithm Parameters on Welded Beam Design Problem Resolution,” Academic Journal of Nawroz University, vol. 12, no. 4, pp. 1–16, Sep. 2023, doi: 10.25007/ajnu.v12n4a1903.
H. B. Ahmad, “Influence of adjusting Big Bang-Big Crunch Algorithm’s parameters on resolving Constraint-based Optimization problems,” 2024.
A. Soler-Dominguez, A. A. Juan, and R. Kizys, “A Survey on Financial Applications of Metaheuristics,” ACM Comput Surv, vol. 50, no. 1, pp. 1–23, Jan. 2018, doi: 10.1145/3054133.
M. Abdel-Basset, L. Abdel-Fatah, and A. K. Sangaiah, “Metaheuristic Algorithms: A Comprehensive Review,” in Computational Intelligence for Multimedia Big Data on the Cloud with Engineering Applications, Elsevier, 2018, pp. 185–231. doi: 10.1016/B978-0-12-813314-9.00010-4.
S. M. Almufti, Metaheuristics Algorithms: Overview, Applications, and Modifications, 1st ed. Deep Science Publishing, 2025. doi: 10.70593/978-93-7185-454-2.
R. Asaad and N. Abdulnabi, “Using Local Searches Algorithms with Ant Colony Optimization for the Solution of TSP Problems,” Academic Journal of Nawroz University, vol. 7, no. 3, pp. 1–6, 2018, doi: 10.25007/ajnu.v7n3a193.
S. M. Almufti, “Hybridizing Ant Colony Optimization Algorithm for Optimizing Edge-Detector Techniques,” Academic Journal of Nawroz University, vol. 11, no. 2, pp. 135–145, May 2022, doi: 10.25007/ajnu.v11n2a1320.
S. M. Almufti, “Lion algorithm: Overview, modifications and applications E I N F O,” International Research Journal of Science, vol. 2, no. 2, pp. 176–186, 2022, doi: 10.5281/zenodo.6973555.
S. Mirjalili and A. Lewis, “The Whale Optimization Algorithm,” Advances in Engineering Software, vol. 95, pp. 51–67, May 2016, doi: 10.1016/j.advengsoft.2016.01.008.
A. Yahya Zebari, S. M. Almufti, and C. Mohammed Abdulrahman, “Bat algorithm (BA): review, applications and modifications,” International Journal of Scientific World, vol. 8, no. 1, p. 1, Jan. 2020, doi: 10.14419/ijsw.v8i1.30120.
A. H. Gandomi and X.-S. Yang, “Chaotic bat algorithm,” J Comput Sci, vol. 5, no. 2, pp. 224–232, Mar. 2014, doi: 10.1016/j.jocs.2013.10.002.
R. R. Ihsan, S. M. Almufti, B. M. S. Ormani, R. R. Asaad, and R. B. Marqas, “A Survey on Cat Swarm Optimization Algorithm,” Asian Journal of Research in Computer Science, pp. 22–32, Jun. 2021, doi: 10.9734/ajrcos/2021/v10i230237.
S. M. Almufti, R. R. Asaad, and B. W. Salim, “Review on Elephant Herding Optimization Algorithm Performance in Solving Optimization Problems,” Article in International Journal of Engineering and Technology, vol. 7, no. 4, pp. 6109–6114, 2018, doi: 10.14419/ijet.v7i4.23127.
L. Goel, J. Kanhar, V. S. Patel, and A. Vardhan, “Hybrid Elephant Herding Optimization–Big Bang Big Crunch for pattern recognition from natural images,” Soft comput, Jun. 2023, doi: 10.1007/s00500-023-08667-y.
E. Rashedi, H. Nezamabadi-pour, and S. Saryazdi, “GSA: A Gravitational Search Algorithm,” Inf Sci (N Y), vol. 179, no. 13, pp. 2232–2248, Jun. 2009, doi: 10.1016/j.ins.2009.03.004.
A. Fathtabar, A. Ebrahimzadeh, and J. Kazemitabar, “Center of gravity (CoG): a novel optimization algorithm,” Evol Intell, vol. 17, no. 4, pp. 2245–2278, Aug. 2024, doi: 10.1007/s12065-023-00884-6.
I. Fister, I. Fister, X.-S. Yang, and J. Brest, “A comprehensive review of firefly algorithms,” Swarm Evol Comput, vol. 13, pp. 34–46, Dec. 2013, doi: 10.1016/j.swevo.2013.06.001.
A. H. Gandomi, X.-S. Yang, and A. H. Alavi, “Mixed variable structural optimization using Firefly Algorithm,” Comput Struct, vol. 89, no. 23–24, pp. 2325–2336, Dec. 2011, doi: 10.1016/j.compstruc.2011.08.002.
A. H. Gandomi, X. S. Yang, and A. H. Alavi, “Mixed variable structural optimization using Firefly Algorithm,” Comput Struct, vol. 89, no. 23–24, pp. 2325–2336, Dec. 2011, doi: 10.1016/j.compstruc.2011.08.002.
A. H. Gandomi, X.-S. Yang, and A. H. Alavi, “Mixed variable structural optimization using Firefly Algorithm,” Comput Struct, vol. 89, no. 23–24, pp. 2325–2336, Dec. 2011, doi: 10.1016/j.compstruc.2011.08.002.
Mohammad-Javad Kazemzadeh-Parsi, “A modified firefly algorithm for engineering design optimization problems,” Iranian Journal of Science and Technology Transactions of Mechanical Engineering, vol. 38, no. 2, pp. 403–421, 2014.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 awaz shaban, Saman Almufti, Renas Rajab Asaad, Renas

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
